Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Chem Phys ; 160(10)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38469909

RESUMO

Wave packet interferometry with vacuum ultraviolet light has been used to probe a complex region of the electronic spectrum of molecular nitrogen, N2. Wave packets of Rydberg and valence states were excited by using double pulses of vacuum ultraviolet (VUV), free-electron-laser (FEL) light. These wave packets were composed of contributions from multiple electronic states with a moderate principal quantum number (n ∼ 4-9) and a range of vibrational and rotational quantum numbers. The phase relationship of the two FEL pulses varied in time, but as demonstrated previously, a shot-by-shot analysis allows the spectra to be sorted according to the phase between the two pulses. The wave packets were probed by angle-resolved photoionization using an infrared pulse with a variable delay after the pair of excitation pulses. The photoelectron branching fractions and angular distributions display oscillations that depend on both the time delays and the relative phases of the VUV pulses. The combination of frequency, time delay, and phase selection provides significant control over the ionization process and ultimately improves the ability to analyze and assign complex molecular spectra.

2.
Opt Lett ; 46(10): 2356-2359, 2021 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-33988582

RESUMO

Extreme ultraviolet (XUV) light is notoriously difficult to control due to its strong interaction cross section with media. We demonstrate a method to overcome this problem by using opto-optical modulation guided by a geometrical model to shape XUV light. A bell-shaped infrared light pulse is shown to imprint a trace of its intensity profile onto the XUV light in the far-field, such that a change in the intensity profile of the infrared pulse leads to a change in the shape of the far-field XUV light. The geometrical model assists the user in predicting the effect of a specific intensity profile of the infrared pulse, thus enabling a deterministic process.

3.
J Chem Phys ; 154(14): 144305, 2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33858156

RESUMO

We have used the FERMI free-electron laser to perform time-resolved photoelectron imaging experiments on a complex group of resonances near 15.38 eV in the absorption spectrum of molecular nitrogen, N2, under jet-cooled conditions. The new data complement and extend the earlier work of Fushitani et al. [Opt. Express 27, 19702-19711 (2019)], who recorded time-resolved photoelectron spectra for this same group of resonances. Time-dependent oscillations are observed in both the photoelectron yields and the photoelectron angular distributions, providing insight into the interactions among the resonant intermediate states. In addition, for most states, we observe an exponential decay of the photoelectron yield that depends on the ionic final state. This observation can be rationalized by the different lifetimes for the intermediate states contributing to a particular ionization channel. Although there are nine resonances within the group, we show that by detecting individual photoelectron final states and their angular dependence, we can identify and differentiate quantum pathways within this complex system.

4.
Nature ; 578(7795): 386-391, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-32042171

RESUMO

Attosecond pulses are central to the investigation of valence- and core-electron dynamics on their natural timescales1-3. The reproducible generation and characterization of attosecond waveforms has been demonstrated so far only through the process of high-order harmonic generation4-7. Several methods for shaping attosecond waveforms have been proposed, including the use of metallic filters8,9, multilayer mirrors10 and manipulation of the driving field11. However, none of these approaches allows the flexible manipulation of the temporal characteristics of the attosecond waveforms, and they suffer from the low conversion efficiency of the high-order harmonic generation process. Free-electron lasers, by contrast, deliver femtosecond, extreme-ultraviolet and X-ray pulses with energies ranging from tens of microjoules to a few millijoules12,13. Recent experiments have shown that they can generate subfemtosecond spikes, but with temporal characteristics that change shot-to-shot14-16. Here we report reproducible generation of high-energy (microjoule level) attosecond waveforms using a seeded free-electron laser17. We demonstrate amplitude and phase manipulation of the harmonic components of an attosecond pulse train in combination with an approach for its temporal reconstruction. The results presented here open the way to performing attosecond time-resolved experiments with free-electron lasers.

5.
Nano Lett ; 18(2): 907-915, 2018 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-29257889

RESUMO

We demonstrate the control of multiphoton electron excitations in InAs nanowires (NWs) by altering the crystal structure and the light polarization. Using few-cycle, near-infrared laser pulses from an optical parametric chirped-pulse amplification system, we induce multiphoton electron excitations in InAs nanowires with controlled wurtzite (WZ) and zincblende (ZB) segments. With a photoemission electron microscope, we show that we can selectively induce multiphoton electron emission from WZ or ZB segments of the same wire by varying the light polarization. Developing ab initio GW calculations of first to third order multiphoton excitations and using finite-difference time-domain simulations, we explain the experimental findings: While the electric-field enhancement due to the semiconductor/vacuum interface has a similar effect for all NW segments, the second and third order multiphoton transitions in the band structure of WZ InAs are highly anisotropic in contrast to ZB InAs. As the crystal phase of NWs can be precisely and reliably tailored, our findings open up for new semiconductor optoelectronics with controllable nanoscale emission of electrons through vacuum or dielectric barriers.

6.
Phys Rev Lett ; 119(20): 203205, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29219339

RESUMO

Nitrogen molecules in ambient air exposed to an intense near-infrared femtosecond laser pulse give rise to cavity-free superradiant emission at 391.4 and 427.8 nm. An unexpected pulse duration-dependent cyclic variation of the superradiance intensity is observed when the central wavelength of the femtosecond pump laser pulse is finely tuned between 780 and 820 nm, and no signal occurs at the resonant wavelength of 782.8 nm (2ω_{782.8 nm}=ω_{391.4 nm}). On the basis of a semiclassical recollision model, we show that an interference of dipolar moments of excited ions created by electron recollisions explains this behavior.

7.
Opt Express ; 23(24): 31460-71, 2015 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-26698771

RESUMO

Metal nanostructures can transfer electromagnetic energy from femtosecond laser pulses to the near-field down to spatial scales well below the optical diffraction limit. By combining few-femtosecond laser pulses with photoemission electron microscopy, we study the dynamics of the induced few-cycle near-field in individual bowtie nanoantennas. We investigate how the dynamics depend on antenna size and exact bowtie shape resulting from fabrication. Different dynamics are, as expected, measured for antennas of different sizes. However, we also detect comparable dynamics differences between individual antennas of similar size. With Finite-difference time-domain simulations we show that these dynamics differences between similarly sized antennas can be due to small lateral shape variations generally induced during the fabrication.

8.
Nano Lett ; 15(10): 6601-8, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26375959

RESUMO

The local enhancement of few-cycle laser pulses by plasmonic nanostructures opens up for spatiotemporal control of optical interactions on a nanometer and few-femtosecond scale. However, spatially resolved characterization of few-cycle plasmon dynamics poses a major challenge due to the extreme length and time scales involved. In this Letter, we experimentally demonstrate local variations in the dynamics during the few strongest cycles of plasmon-enhanced fields within individual rice-shaped silver nanoparticles. This was done using 5.5 fs laser pulses in an interferometric time-resolved photoemission electron microscopy setup. The experiments are supported by finite-difference time-domain simulations of similar silver structures. The observed differences in the field dynamics across a single particle do not reflect differences in plasmon resonance frequency or dephasing time. They instead arise from a combination of retardation effects and the coherent superposition between multiple plasmon modes of the particle, inherent to a few-cycle pulse excitation. The ability to detect and predict local variations in the few-femtosecond time evolution of multimode coherent plasmon excitations in rationally synthesized nanoparticles can be used in the tailoring of nanostructures for ultrafast and nonlinear plasmonics.


Assuntos
Nanoestruturas , Microscopia Eletrônica de Varredura
9.
Phys Rev Lett ; 94(3): 033001, 2005 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-15698258

RESUMO

We report the generation, compression, and delivery on target of ultrashort extreme-ultraviolet light pulses using external amplitude and phase control. Broadband harmonic radiation is first generated by focusing an infrared laser with a carefully chosen intensity into a gas cell containing argon atoms. The emitted light then goes through a hard aperture and a thin aluminum filter that selects a 30-eV bandwidth around a 30-eV photon energy and synchronizes all of the components, thereby enabling the formation of a train of almost Fourier-transform-limited single-cycle 170 attosecond pulses. Our experiment demonstrates a practical method for synthesizing and controlling attosecond waveforms.

10.
J Am Soc Mass Spectrom ; 16(1): 82-9, 2005 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-15653366

RESUMO

The mechanism of atomic and molecular ionization in intense, ultra-short laser fields is a subject which continues to receive considerable attention. An inherent difficulty with techniques involving the tight focus of a laser beam is the continuous distribution of intensities contained within the focus, which can vary over several orders of magnitude. The present study adopts time of flight mass spectrometry coupled with a high intensity (8 x 10(15) Wcm(-2)), ultra-short (20 fs) pulse laser in order to investigate the ionization and dissociation of the aromatic molecule benzene-d1 (C(6)H(5)D) as a function of intensity within a focused laser beam, by scanning the laser focus in the direction of propagation, while detecting ions produced only in a "thin" slice (400 and 800 microm) of the focus. The resultant TOF mass spectra varies significantly, highlighting the dependence on the range of specific intensities accessed and their volumetric weightings on the ionization/dissociation pathways accessed.


Assuntos
Lasers , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/métodos , Benzeno/química , Deutério/química , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz/instrumentação
11.
Opt Lett ; 28(23): 2393-5, 2003 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-14680193

RESUMO

We propose a novel method for completely characterizing ultrashort pulses at extreme-ultraviolet (XUV) wavelengths by adapting the technique of spectral phase interferometry for direct electric-field reconstruction to this spectral region. Two-electron wave packets are coherently produced by photoionizing atoms with two time-delayed replicas of the XUV pulse. For one of the XUV pulses, photoionization occurs in the presence of a strong infrared pulse that ponderomotively shifts the binding energy, thereby providing the spectral shear needed for reconstruction of the spectral phase of the XUV pulse.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...